数学公式LaTex公式$\displaystyle\sum\limits_{i=0}^n i^3$$\left(\begin{array}{c}a\\ b\end{array}\right)$$\left(\frac{a^2}{b^3}\right)$$\left.\frac{a^3}{3}\right\lvert_0^1$$\begin{bmatrix}a & b \\c & d \end{bmatrix}$$\begin{cases}a & x = 0\\b & x > 0\end{cases}$$\sqrt{\frac{n}{n-1} S}$$\begin{pmatrix} \alpha& \beta^{*}\\ \gamma^{*}& \delta \end{pmatrix}$$A\:\xleftarrow{n+\mu-1}\:B$$B\:\xrightarrow[T]{n\pm i-1}\:C$$\frac{1}{k}\log_2 c(f)\;$$\iint\limits_A f(x,y)\;$$x^n + y^n = z^n$$E=mc^2$$e^{\pi i} - 1 = 0$$p(x) = 3x^6$$3x + y = 12$$\int_0^\infty \mathrm{e}^{-x}\,\mathrm{d}x$$\sqrt[n]{1+x+x^2+\ldots}$$\binom{x}{y} = \frac{x!}{y!(x-y)!}$$\frac{\frac{1}{x}+\frac{1}{y}}{y-z}$$f(x)=\frac{P(x)}{Q(x)}$$\frac{1+\frac{a}{b}}{1+\frac{1}{1+\frac{1}{a}}}$$\sum_{\substack{0\le i\le m\\ 0\lt j\lt n}} P(i,j)$$\lim_{x \to \infty} \exp(-x) = 0$$\cos (2\theta) = \cos^2 \theta - \sin^2 \theta$
markdown数学LaTex公式大全
未经允许不得转载:坚果之云 Markdown » markdown数学LaTex公式大全
坚果之云 Markdown